If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5y^2-12y-13=0
a = 5; b = -12; c = -13;
Δ = b2-4ac
Δ = -122-4·5·(-13)
Δ = 404
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{404}=\sqrt{4*101}=\sqrt{4}*\sqrt{101}=2\sqrt{101}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-2\sqrt{101}}{2*5}=\frac{12-2\sqrt{101}}{10} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+2\sqrt{101}}{2*5}=\frac{12+2\sqrt{101}}{10} $
| -3x+94=2x+24 | | 2x2+6x+19=0 | | 2e-3/6+1+3e/3=4 | | 8y-10=5y+6 | | 1-3p/6=6 | | 64x^2-16x-271=0 | | 64x^2+16x-271=0 | | 3z+5=4z–8 | | 3y-3=2y+3 | | 6(t+7)=4(t+2) | | 3y-3=2y-3 | | -2c/5=8 | | 2m/4=6 | | 3y-y=4y | | 4·(x-2)=2x+6x= | | 6x+4=28x= | | 4*(x-2)=2x+6 | | 4q=-27 | | x^2-(10x/3)+1=0 | | 375+0.5x^2)-(375-0.5x^2)=6935 | | (375+0.5x^2)-(375+0.5x^2)=6935 | | c-41/6=97/8 | | 6k/2k=0 | | 64x^2+120x-288=0 | | 4*(x-2)=2x+6 | | (375+0.5x^2)-(375-0.5x^2)=6935 | | 4·(x-2)=2x+6 | | 50=4t+t^2 | | 4·(x-2)=2x+6 | | 50=4t+t66t2 | | 2x+6=7-3x+3 | | 3^-8n=14 |